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Camber distributions are chosen for airfoils of zero thickness that maximize the 
angular velocity induced by a sudden decrease in free-stream velocity. Those optimal 
shapes that are in equilibrium in steady forward flow are also neutrally stable in that 
position. 

1. Introduction 
The task considered in this paper is that of the choice of the optimal camber for a 

pivoted thin airfoil near a plane boundary, in unsteady two-dimensional flow of an 
incompressible inviscid fluid, as sketched in figure 1. The aim of the optimization is to 
maximize the destabilizing moment about the pivot point, owing to deceleration of 
the incident flow. The work has possible application to the design of valves, especially 
those used for replacement of the valves of the heart. 

A similar, but entirely steady, analysis was recently outlined by Tuck (1982; 
henceforth designated I). That is, the design in I was chosen so as to maximize the 
steady reversed-flow destabilizing moment, given that the leaflet is still in the open 
position, where it was in equilibrium in a previous steady forward flow. This procedure 
ignores the unsteady effects that take place as the flow changes its direction, and is 
somewhat unrealistic in that, if the valve is really doing the job it was designed to do, 
no steady reversed flow will ever occur. 

Inclusion of unsteady-flow (in particular, vortex-shedding) effects on the dynamics 
of a pivoting airfoil of given camber, in a stream of time-varying speed, is not out of 
the question, and numerical computations of this nature have been performed (e.g. by 
Yeung 1978) in other contexts. However, the complexity of these computations is such 
that the prospect of using such numerical results to design the camber that maximizes 
some objective function is not very great. 

In  fact, we are not necessarily interested in a complete unsteady solution, and in 
particular (for very good reasons) we are not interested in solutions involving significant 
unsteady vortex shedding from the trailing edge. Again, if a significant amount of such 
vortex shedding occurs, the design must be a failure, a t  least for applications such as 
to prosthetic heart valves, where we must avoid vortices as far as possible, in order 
to prevent damage and clot formation in the blood. 

Vortex shedding from an airfoil occurs in unsteady flow when the airfoil conforms 
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FIGURE 1. Sketch of flow situation. 

insufficiently to the streamlines of the undisturbed flow. This is, of course, to be 
expected for a j x e d  airfoil with significant camber and/or angle of attack. If, on the 
other hand, the foil is allowed to move freely in response to fluid pressure, this extra 
freedom will enable it at least to attempt to conform to the undisturbed flow as it 
moves. Thus an optimally designed valve leaflet will minimize the extent of vortex 
shedding. 

For example, a natural flexible heart valve can achieve this ideal performance 
almost exactly, since there is no reason in principle why it should not follow the paths 
of fluid particles quite closely. However, the single degree of freedom available to a 
rigid pivoting prosthetic valve leaflet allows only an 'averaged' flow alignment, and 
some vortex shedding is inevitable. 

In the present paper we consider those unsteady flows in which vortex shedding can 
be neglected entirely. This can either be interpreted as an approximation to the ideal 
state discussed above, or as an exact treatment of the instantaneous response to a 
step-function change in the forward flow. If there is such a rapid alteration in the input 
flow conditions, the immediate response of the flow streamlines, and hence of the valve 
itself, is unaffected by vortex shedding, which occurs only over a longer time span. 

In fact, the only unsteady flows in which we are interested are those that occur 
quickly. That is, we consider flows in which the valve perturbs a uniform stream U ( t ) ,  
which suddenly decreases near t = 0 from a previous steady value U = U, to zero or 
nearly zero. As a result of this decrease there will be a moment acting about the pivot 
point, which will, if the valve is correctly designed, act to cause it to close. 

Specifically, if U ( t )  is exactly a step function, decreasing instantaneously from U, to 
zero, and if the valve is initially set a t  an effectively negative angle of attack, the 
immediate effect is to induce a &-function or impulsive destabilizing moment, and 
hence a dynamic response involving an instantaneously developed destabilizing angular 
velocity. This initial angular velocity can be computed without consideration of vortex 
shedding; indeed, it requires implementation of the condition that no change in the 
net circulation about the airfoil occurs during the impulse. 

In the present article we replace the objective function (maximum steady reverse- 
flow moment) of I by that of maximizing this instantaneous angular velocity. Because 
of the simplifying assumption of no vortex shedding, this quantity can be expressed 
as a functional of the camber, for an airfoil of zero thickness, and hence is suitable for 
application of the calculus of variations (Craggs 1973). 
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Aside from replacement of one objective function by another, the present format 
follows I quite closely. That is, after formulating the problem mathematically, we first 
solve it analytically in the case of an airfoil alone in an unbounded fluid. The resulting 
optimal shape has zero camber at its leading and trailing edges. 

We then treat the case where there is an additional boundary in the form of a plane 
wall parallel to the incident flow direction. This problem can only be solved numeric- 
ally, and computed results are given for various clearance/chord ratios. The limiting 
cases of large and small clearances are discussed. 

Optimum shapes can be derived for any choice of the pivot point. However, we 
present here only those shapes that are in equilibrium for steady forward flow. A 
remarkable feature of these (highly cambered) shapes is that their centre of pressure 
coincides with that of a flat plate. Hence they are neutrally stable when in their 
equilibrium position. The influence of this property on actual design remains to be 
investigated. 

The optimization is carried out subject to the constraint that the mean-square slope 
of the leaflet surface be held fixed. This constraint limits the extent to which the leaflet 
obstructs the forward flow when the valve is fully open. The relationship between this 
constraint and the pressure drop across the valve is discussed in § 6. Further work is 
needed to quantify this relationship, and also to investigate the (possibly beneficial) 
effect of non-uniform leaflet thickness. 

2. The general unsteady-flow problem 
Our concern is with a two-dimensional flow about a zero-thickness airfoil with 

equation y = h +Ax, t ) ,  - 1 < x < 1. The fluid is inviscid and incompressible and the 
flow irrotational except for a possible trailing vortex sheet. Thus its velocity can be 
written 

9 = V( V(t )  x + d ( x ,  Y, t ) ) ,  (2.1) 

where U ( t )  is the time-varying uniform stream at infinity. That is, at infinity the 
disturbance velocity V$ tends to zero. 

Elsewhere, g5 satisfies Laplace’s equation, subject to the boundary condition 

ad - as ad a !  - --+ u+- - 
ay at ( a x ) a x  

on the airfoil y = h +f(x, t )  0. This condition is linearized to 

and applied on y = h f 0 for airfoils at small local angles of attack -fz. 

wall, i.e. 
The remaining boundary conditions are vanishing normal velocity on the plane 

-- ad - 0  on y = O ,  
aY 

and continuity of pressure across the trailing wake vortex sheet for x > 1. Bernoulli’s 
equation gives the pressure as 
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This pressure is normalized so that its value at infinity is - p o ( t )  x. Upon linearization, 
(2.5) gives 

and the linearized wake condition is therefore that there be no jump in dt + UdZ across 
the limiting plane vortex sheet y = h k 0, x > 1. In fact this condition also applies a t  
the trailing edge x = 1, where it defines the ‘Kutta’ condition. 

In the special case in which the airfoil is a rigid body capable of rotating about a 
pivot at x = xo, we have 

where a(t) is the angle of attack, for some given f(x) function. Note that without loss of 
generality we may take a(0) = 0, absorbing any initial angle of attack into the defini- 
tion of the function f(x). Now the boundary condition (2.3) becomes 

j(X> t )  = f(4 + (x - xo) 9 (2.7) 

= &(t)  (x - xo) + U [ f ( x )  + a(t)]. 
aY 

Once the above boundary-value problem is solved for 4, we may compute the 
pressure using (2.6), and hence the elementary vertical force dF on a section dx of the 
airfoil, namely 

from which follows the moment about the hinge point 

dF = - [P(x,  h + 0, t )  -P(x,  h - 0, t ) ]  dx,  (2.9) 

Finally, the equation of motion is 
I,&(t) = M ( t ) ,  

(2.10) 

(2.11) 

where I ,  is the moment of inertia of the mass of the airfoil about x = x,. The complete 
coupled dynamic-aerodynamic system so formulated must be solved simultaneously, 
i.e. as we advance the computation in time we use (2.11) to compute the new geometric 
position of the airfoil, before solving a new aerodynamic problem, etc. 

3. Impulsive motion 

change Ua/ax in the above equations. Thus the pressure can be approximated as 
When U ( t )  changes rapidly,’time rates of change a/at dominate convective rates of 

and the boundary condition 

3J = &(t) (x-xo) + Uf’(x). 
aY 

Since the ‘wake’ condition is now simply continuity of a$/at and hence of 4 across 
y = h, there can be no change in the circulation around the airfoil during the period 
in which the impulsive change occurs, and there is, as yet, no wake present. 

Further, the potential g5 can be decomposed into separate contributions from the 
two terms in (3.2), writing 

(3.3) 9(., Y, t )  = W )  A i @ , Y )  + U ( t )  d&,Y). 
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Note that the coefficient potentials $&, & can be assumed time-invariant, a reflection 
of the fact that no ‘history ’ effects can be present in the absence of vortex shedding. 
The boundary conditions satisfied by $& and dU axe respectively 

a$,/ay = x - xo, 

a$u/@ = f ’ ( X ) .  

M ( t )  = - Z(t) I ,  - dr(t)p, 

A corresponding decomposition of pressure, force and moment gives 

where 

The quantity I A  has the interpretation of an added moment of inertia. This is seen 
by writing the equation of motion (2.11) as 

( I ,  -k I A )  d = - o(t) p, (3.9) 

the combined coefficient of the angular acceleration being the sum of the inertia of the 
airfoil itself and the added inertia of the fluid that must move with the airfoil. Although 
the linearized equations of motion can always be displayed in the form (3.9), i t  is only 
for the impulse case that the coefficients I ,  and p are constants, independent of the 
past history of the motion. 

Since I A  andp are pure constants in the present case, the ‘solution’ of (3.9) can be 
written down immediately as 

(3.10) 

In particular, if V(t )  is of a step-function character, (3.10) implies that there is a 
corresponding discontinuity in the angular velocity a of the airfoil. In such a case, 
(3.10) applies exactly at t = 0,; i.e. it determines the instantaneous stepwise change 
in angular velocity, immediately after the free-stream velocity jumps. Alternatively, 
(3.10) can be interpreted as an approximation for the response to any change in U(t )  
that is sufficiently rapid for vortex shedding to be neglected. 

In  the present case, we are interested in the dynamics of the airfoil subsequent to a 
sudden loss of forward speed, i.e. when U(0J = U, > 0, and U(0,) = 0. Then, if the 
airfoil was initially at rest, i.e. oi(O-) = 0, (3.10) states that 

(3.11) 

Thus, for p > 0, a positive (i.e. closing) angular velocity develops instantaneously at 
t = 0,, whenever the flow is suddenly stopped. The design task is to choose the airfoil 
shape function f(x) such that this instantaneously developed angular velocity is 
maximized. 

In applications such as to heart valves, flow deceleration is rapid, but of course not 
exactly instantaneous. In  such a cme, our model allows a rapid, but not exactly 
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instantaneous, development of a valve-closing angular velocity, with angular accelera- 
tion proportional to the flow deceleration - O(t). 

It is notable that the quantity lA is independent off, and furthermore can be shown 
to be positive. Hence our task can be interpreted as that of maximizing the quantity 
p defined by (3.8), by variation inf. This maximization is carried out subject (as in I) 
to the constraint of keeping fixed the mean-square slope 

1 .=‘I 21 - 1  f’ (x)2 ax. (3.12) 

We perform this optimization for each separate choice of the pivot point xo, finally 
hoping to choose that member of the family of optimum airfoils such that the steady 
forward flow is in equilibrium. 

The boundary-value problems for $,-, and $& can be solved in terms of distributions 
of vortices over the chord y = h, - 1  -= x c 1, together with their images in the plane 
wall y = 0. Thus for example 

(3.13) 

with branch cuts of the arctangent function taken downstream of the vortex points 
at x = 5, and principal values taken on the interval ( - n, n). Upon substitution into 
the boundary condition ( 3 4 ,  we obtain an integral equation for the unknown vortex 
strength y(x), namely 

where 
1 1 

2nK(x) = - -- 
x x2+4h2’ 

(3.14) 

(3.16) 

An identical integral. equation holds for the problem, withf’(x) replaced by x - xo. 
The integral equation (3.14) must be solved subject to the zero-circulation condition 

f l  y ( x )  ax = 0. (3.16) 

Except in the limit aa h --f 00, to be treated in 5 4, there is no analytic solution of (3. la), 
and we shall have to solve numerically. Once y(x) is determined, the potential jump 
follows as 

(3.17) 

and hence the moment coefficient (3.8) is 

4. Analytic solution for unbounded fluid 
If h = co, the integral equation (3.14) has, as its exact solution subject to (3.16), the 

expression 
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FIGURE 2. Optimal zero-thickness leaflets for h/Z = 0,  0.3, co. 

from which (3.18) gives an explicit formula for the moment coefficient p in terms of 
the airfoil slope function$'(x), namely 

p = pJ ( Z - 2 Z 0 ) ( 1 " ~ x " ) ~ f ' ( X ) d X .  
-1 

For example, a flat plate at angle of attack a, with 

has 
f ' ( x )  = -a, 

p = pnuxoP. 

Similarly, the choicef'(a) = z -xo in (4.2) gives the moment of inertia la, namely 

rA = ~ p n i ~ p  + sx:]. (4.5) 

Maximization of p, subject to constancy of lf'zdx, implies immediately that f' is 

(4.6) 

for some Lagrange multiplier A,  which simply provides the scale of the camber, and 
is clearly positive. The optimum airfoil thus has zero local angle of attack at both 
leading and trailing edges and (for zo < 0)  maximum camber in its trailing half. 

proportional to the kernel function in (4.2), i.e. 

f'@) = A(x- 2XJ ( P - X % ) f  

The resulting moment coefficient is 
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and the mean-square camber is 
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E = Ap/2p1. 

The above optimization has been performed at fixed xo. In  fact our optimum solution 
is most useful if it  is one that is in equilibrium for the steady forward flow. Now (as in 
I), in such a flow at speed U, the moment about x = xo is 

M +  = 2 p q  [Z+x0-z](-) z + x  4 f ’ ( x ) d x ,  
-1  1-x  (4.9) 

and iff’@) is given by (4.6) we have 

M+ = -4pUtA24,(2~~+Z).  (4.10) 

Thus equilibrium can occur at xo = 0 or xo = - &Z. The former position is clearly un- 
stable, whereas the latter is a t  the critical position for static stability. That is, the 
present cambered airfoil with xo = -42 has the remarkable property of having its 
centre of pressure a t  precisely the same (quarter-chord) position as does a flat plate 
at an angle of attack. If xo = - &Z, (4.6) gives 

f’(x) = h(z+x)t(z-x)*. (4.11) 

Note that the leading edge not only has zero slope but also zero curvature. Its shape 
is shown in figure 2 as the curve for h-tco. 

5. Numerical solutions for finite wall clearance 
Although there is no explicit functional such as (4.2) to maximize when h < 00, it is 

still possible to apply the methods of the calculus of variations (Craggs 1973). That is, 
if we wish to maximize p given by (3.18), subject to constancy of E given by (3.12). 
and a zero value of the net circulation given by (3.16), variations Sf’ inf’(x) and Sy in 
y(x)  must satisfy 

for some Lagrange multipliers A,, A,. The variations Sf’ and Sy are connected by the 
integral equation (3.14), and hence we can eliminate Sf’(x), giving 

Since the variation Sy(x) is arbitrary, and K (  - x) = - K ( x ) ,  (5.2) implies 

(5.3) 

Equation (5.3) is now interpreted as an integral equation to determine the required 
slope functionf’(z). It is, of course, identical to the equation (3.14) that determines the 
vorticity , for a quadratically varying slope function. Any numerical procedure for 
solving the flow problem yields immediately a solution of the optimal design problem. 

However, we must take into account the fact that singular integral equations such 
as (3.14) and (5.3) require one additional condition to render their solutions unique. 
In the case of (3.14), that condition is the zero-circulation condition (3.16). In the case 
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of (5.3) the unknown is the geometrical quantityf’(z), not y(z ) ,  and such a condition 
is no longer appropriate. 

It is of importance that we have two arbitrary constants A,, A, on the right of (5.3). 
Thus a total of three subsidiary conditions are needed. One of these is simply the 
choice of scale of the design, i.e. a multiplying factor like A in $4, that ultimately 
determines the mean-square slope E .  

The remaining two subsidiary conditions are chosen as 

f’( * 1 )  = 0. (5-4) 

That is, we require the airfoil to have zero slope at both of its edges, in its design 
configuration. This is consistent with the results obtained in $4 for the unbounded- 
fluid case. It is notable that any solution of (5.3) that does not satisfy (5.4), necessarily 
has a singularity of inverse-square-root character at the ends. That is, if the end slope 
of the optimum airfoil is not zero, it  is necessarily infinite. Such a singularity causes 
the integral (3.12) for E to fail to converge, and (cf. I) although this is not necessarily 
an indication of failure of the design, it may be considered undesirable in practice. 

The procedure for solving the integral equation (5.3) is described in I, and can be 
repeated almost unchanged here. The program automatically ensures that f ’ ( l )  = 0, 
and we simply enforcef’( - 1 )  = 0 as well, by appropriate choice of the constants A,, A,. 
This solution can be carried out for any choice of the hinge point x,, and we observe 
that the camber function f depends linearly on x,; in particular, a term A, xi on the 
right of (5.3) can be absorbed into the arbitrary constant A,. 

The moment M+ about the hinge point x = xo during steady forward flow at speed 
U, can then be determined by solving yet again an integral equation of the form (3.14), 
with f ( x )  given by the now-determined optimal camber. However, this steady-flow 
solution (say y = y + ( x ) )  must not satisfy (3.16), but rather the Kutta condition 

y+(Z) = 0 (5.5) 

at the forward-flow trailing edge x = 1. 
Then the required moment is (cf. I) 

M+ = -pU, ( x - x , ) y + ( x )  ax. 

Sincef’ (and hence y+) is a linear function of x,, M +  is quadratic in x,, and can be 
written (as in (4.10)) as 

since it is clear by symmetry that Mf = 0 if xo = 0. Computations at two separate 
values of xo enable estimation of the unknowns M, and x1 in (5.7). 

The method discretizes the interval ( - 1 , l )  into N segments and inverts an N x N 
matrix. The error decays like N-,  as N+m, and is below 0.5 % for all N > 30. The 
results show that, to at least this accuracy, the point x = x, coincides for all h with 
the point of neutral stability for steady forward flow. That is, x = x, is the centre of 
pressure of a flat plate at positive angle of attack in such a flow. Furthermore (cf. 
(4.10)), the solutions with xo = x1 havef”( - I )  = 0; i.e. the leading-edge curvature of 
the airfoil is zero. 

This is a remarkable result. Except in the limiting cases h+m and h+ 0, we have 
not been able to prove it analytically, but the numerical evidence is strong. That is, 

M+ = M O X O ( X ~ - X ~ ) ,  (5.7) 
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we are able to construct a family of cambered airfoils of zero thickness, which maximize 
the impulsively developed angular velocity of closing when the flow is reduced, but 
which are in neutrally stable equilibrium for steady forward flow. 

The numerical results show only a very small variation in the optimal camber, as 
the clearance ratio h/Z varies. Figure 2 gives f(x) (scaled so f (  & 1 )  = f 1) for h/Z = 0.3 
and for the limiting cases h + 0 and h+ oc). The curve for h + co corresponds to (4.1 l ) ,  
and that for h -+ 0 is the quartic polynomial with slope 

as can be verified by allowing h+O in the integral equation (5.3). Shapes for all h/Z 
interpolate smoothly between these limits (5.8), (4.11) as h varies from 0 to co, while 
the equilibrium pivot point varies between - *Z and - Ql (cf. figure 2 of I). This lack 
of sensitivity to clearance from the wall is quite encouraging, as it implies that an 
almost-universal camber function can be used for many possible design configurations. 
Note again that the actual vertical scale of figure 2 is arbitrary. The actual choice of 
the scale off (x) is necessarily a compromise between rate of closing and forward-flow 
obstruction; this is discussed further in $6. 

Although the camber of the present theory is not unlike that developed in I on the 
basis of maximizing the steady reverse-flow moment, there are significant differences 
near the leading edge. The family in I had its maximum slope at that point, whereas 
in the present case not only the slope, but also its derivative, the curvature of the mean 
surface, should be zero a t  the leading edge. The analysis in I also included a non-zero 
airfoil thickness when h < 00, whereas in the present computations we have taken the 
thickness as zero. 

The fact that the forward-flow equilibrium pivot point is exactly neutrally stable is 
not necessarily a difficulty, although corrections allowing a reserve of stability may 
degrade the optimum. One obvious solution is to pivot slightly ahead of the equilibrium 
point xo = xl. In that case (since Mo in (5.7) is negative) there will be a small negative 
moment Mf about the pivot point, so tending to cause the valve to open too far in 
the steady forward flow. 

There are then two alternatives; either to resist this tendency, or not to. That is, 
the valve may be stopped from opening beyond the design position. In any case, this 
is the normal procedure in design of uncambered leaflets, for example as reviewed by 
Bonchek (1981) for prosthetic heart valves. In this case, the design can be the optimum 
for the given xo, and will be slightly different from that shown for zo = z1 in figure 2. 
Alternatively, we may allow the valve to open more, until it reaches equilibrium. 
Again, the optimum valve shape cannot be one of those in figure 2, since these are in 
equilibrium at xo = xl. Further work is needed to clarify such ‘slightly off-design’ 
considerations. 

f’(X) = h(l+x)2(1-x), (5 .8)  

6. Discussion 
The leaflet shapes of figure 2 maximize the unsteady moment coeficient ,u defined 

by (3.6), subject to fixed mean-square slope E as defined by (3.12), and a fixed hinge 
point xo. The actual value of xo is chosen so that the steady forward flow is in equi- 
librium, and this value appears to coincide with that for which this equilibrium is 
exactly neutrally stable. For any fixed x,,, the moments of inertia (natural and added) 
are fixed, and hence maximum ,u implies maximum initial rate of closing. 
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The choice of E as a constraint is dictated mainly by considerations of convenience, 
for application of the methods of the calculus of variations. The root-mean-square 
slope E* can be thought of as an averaged or effective angle of attack. Clearly we can 
increase the rate of closing as much as we like by increasing this effective angle of 
attack. The price to be paid for such an increase is an increase in the obstruction caused 
to the steady forward flow. Thus if, as is usually the case, we have to  compromise in 
design by keeping this obstruction as small as possible, while maximizing the rate of 
closing, a constraint on E is quite appropriate. 

In  fact, this concept may be made a little more precise. An important design para- 
meter for prosthetic heart valves is the ‘pressure loss ’ due to their insertion in steady 
forward flow. That is, if we wish to maintain the same speed of flow in a tube containing 
a fully open valve as in one containing no valve at all, we must supply a small increase 
Ap in the pressure difference along the tube. It is conventional to use this quantity A p  
as one of the figures of merit to compare different valves, i.e. a valve with a smaller 
A p  is ‘better’. 

It is hardly feasible to estimate Ap theoretically. In particular, Ap = 0 if the fluid 
is truly inviscid. One may expect that A p  is proportional to the drag coeficient CD of 
the fully open leaflet. Thus, one empirical approach would be to use standard aero- 
dynamic data on the drag of airfoils, e.g. from Abbott & Von Doenhoff (1959). In  
general, the drag CD = C,(a) on an airfoil offixed camber can be written as a quadratic 
expression of the form 

C D ( a )  = cD(0) + &‘a2cg(o) (6.1) 

for small angle of attack a. The constant term C,(O) is mainly skin friction; the term 
in a2 can come from a variety of causes, such as shifts with a in the point of separation, 
blockage in the tube, induced drag, etc. More generally, if we consider a family of 
airfoils of various angles of attack and camber, it  is not unreasonable to replace a 2  in 
(6.1) by the quantity E, which reduces to a2 if the airfoil is uncambered. 

Now if we vary the camber, the constant term C,(O) is unchanged, so that drag 
variation occurs via variation in a*, or equivalently in E. Thus we see that our con- 
straint on E is quantitatively equivalent to a constraint on the pressure loss Ap, and 
when we compare the rate of closing of two valves with the same E we are in effect 
comparing them at fixed pressure loss. The leaflet shapes shown in figure 2 are guaran- 
teed to be the best possible, for rate of closure, among families of fixed E, and therefore 
of fixed Ap. 

For example we may wish to compare the present cambered leaflets with un- 
cambered ones, i.e. with a simple flat plate at  a suitable angle of attack u. If in fact we 
compare the ratio ,u/E*, the effect is to eliminate the scales of the two leaflets, namely 
the angle of attack u of the flat plate, and the Lagrange multiplier for the optimal 
cambered leaflet (e.g. h in (4.11)). 

Even more appropriate is a comparison using the non-dimensional ratio 

where I, is the added mass defined by (3.7). The quantity I, can easily be computed 
using the present computer program, for any clearance ratio hll .  A useful property of 
the quantity a is that in some reasonable circumstances it approximates the actual 
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hll - 
FIGURE 3. Scaled unsteady moment, or initial angular velocity of closing. The solid line is for 
the optimal cambered leaflets of figure 2, and the dashed line for a flat plate fixed at  such an 
angle of attack as to yield the same mean square slope as the cambered leaflet. Also shown 
(chain-dotted) is the result for a flat plate whose angle of attack is the same as that of the chord 
line of the cambered leaflet. 

rate of closing. Specifically, if we neglect the natural inertia I .  relative to IA in (3.1 l), 
the initial angular velocity of closing is 

UOE* Q. Oi(0) = - 
1 

Note that for fixed Q, a is proportional to the forward flow spsed Uo and to the effective 
angle of attack E),  and inversely proportional to the overall scale l of the valve. Neglect 
of I, compared with I, is a good approximation for light leaflets, e.g. those lighter 
than a circumscribing circular cylinder of fluid. 

Figure 3 shows Q as a function of clearance ratio h/l ,  for the optimal leaflet and for 
a flat plate (dashed). The improvement due to camber is almost independent of 
clearance, being about 14 yo for all h/l  values. The pivot point is always chosen as that 
for forward flow equilibrium. 

It should be noted that the comparison in figure 3 is necessarily favourable to the 
optimal leaflet, since that is guaranteed by the calculus-of-variations approach to have 
a better pE-4 value than any other shape. However, it is in fact a somewhat severe 
test of the optimum, since the flat plate with the same E value has an angle of attack 
much greater than that of the optimal leaflet. For example, a more-naive but still 
perhaps relevant comparison would be with the flat plate that has the same angle of 
attack as the chord line of the optimal leaflet, i.e. lies in the line drawn between its 
leading and trailing edges. This flat plate has only about half of the angle of attack of 
the one with the same 23:-value, and hence the improvement due to camber is doubled 
to 28 yo, again almost uniformly with respect to hll. The chain-dotted curve of figure 
3 gives the Q value for this case. 

So long as the camber is of the right general character, performance improvements 
over a flat plate can be almost as good as that of the optimum. For example, the steady- 
reversed-flow optimal shapes of I lead to p-values that are little reduced comparedwith 
the present unsteady optimal shapes, for the same chord-line angle of attack. Unfor- 
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tunately, it is impossible to compare these two optima at  fixed E,  since the shapes of I 
have E = 00. 

Figure 2 enables some discussion of the role of the clearance ratio h/Z on design. It 
would appear that Q increases as h/Z decreases, and hence a small clearance ratio is 
desirable. Within reason this is probably true. However, the idea that i?C measures 
changes in drag coefficient and hence pressure drop Ap becomes less tenable &B h -+ 0, 
so this conclusion should be interpreted with caution. In any case, most designs will 
have the h/Z ratio determined by other considerations. 

For example, a recent prosthetic heart valve design is that of St Jude Medical Inc. 
(Bonchek 1981). This involves two symmetrically placed flat leaflets a t  f 5' to the 
flow direction. The plane y = 0 is thus not 80 much an actual boundary of the flow as 
a plane of symmetry. The clearance ratio is about h/Z = 0.3, and the hinge point a t  
about quarter-chord, q, = - 42. The result of figure 3 shows that there is a potential 
gain of 14 yo in the rate of closing, without increase in pressure loss, if the flat plate is 
replaced by a suitably cambered shape. 

All results in the present paper are for leaflets of zero thickness. It is possible, as in I, 
to incorporate a designed optimal thickness distribution, to improve the performance 
even more. This is significant only for relatively small values of the clearance, say 
h/Z < 0.5. For example, at h/Z = 0.3 preliminary computations suggest that a further 
16 yo improvement in the Q-value could be achieved by careful shaping of the leaflet 
thickness. This question is left for further investigation. 

All computations were carried out on a TRS-80 microcomputer, with some selective 
checking on a CDC Cyber 173. The authors thank Dr M. Haselgrove for the latter, 
and for some critical discussions. Support by the Australian-American Educational 
Foundation, by the Life Insurance Medical Research Fund of Australia and New 
Zealand, by the Clive and Vera Ramaciotti Foundation, and by the Australian 
Research Grants Committee, is gratefully acknowledged. 
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